import Point from './Point'; /** * The pixi Matrix class as an object, which makes it a lot faster, * here is a representation of it : * | a | b | tx| * | c | d | ty| * | 0 | 0 | 1 | * * @class * @memberof PIXI */ export default class Matrix { /** * */ constructor() { /** * @member {number} * @default 1 */ this.a = 1; /** * @member {number} * @default 0 */ this.b = 0; /** * @member {number} * @default 0 */ this.c = 0; /** * @member {number} * @default 1 */ this.d = 1; /** * @member {number} * @default 0 */ this.tx = 0; /** * @member {number} * @default 0 */ this.ty = 0; this.array = null; } /** * Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows: * * a = array[0] * b = array[1] * c = array[3] * d = array[4] * tx = array[2] * ty = array[5] * * @param {number[]} array - The array that the matrix will be populated from. */ fromArray(array) { this.a = array[0]; this.b = array[1]; this.c = array[3]; this.d = array[4]; this.tx = array[2]; this.ty = array[5]; } /** * sets the matrix properties * * @param {number} a - Matrix component * @param {number} b - Matrix component * @param {number} c - Matrix component * @param {number} d - Matrix component * @param {number} tx - Matrix component * @param {number} ty - Matrix component * * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ set(a, b, c, d, tx, ty) { this.a = a; this.b = b; this.c = c; this.d = d; this.tx = tx; this.ty = ty; return this; } /** * Creates an array from the current Matrix object. * * @param {boolean} transpose - Whether we need to transpose the matrix or not * @param {Float32Array} [out=new Float32Array(9)] - If provided the array will be assigned to out * @return {number[]} the newly created array which contains the matrix */ toArray(transpose, out) { if (!this.array) { this.array = new Float32Array(9); } const array = out || this.array; if (transpose) { array[0] = this.a; array[1] = this.b; array[2] = 0; array[3] = this.c; array[4] = this.d; array[5] = 0; array[6] = this.tx; array[7] = this.ty; array[8] = 1; } else { array[0] = this.a; array[1] = this.c; array[2] = this.tx; array[3] = this.b; array[4] = this.d; array[5] = this.ty; array[6] = 0; array[7] = 0; array[8] = 1; } return array; } /** * Get a new position with the current transformation applied. * Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering) * * @param {PIXI.Point} pos - The origin * @param {PIXI.Point} [newPos] - The point that the new position is assigned to (allowed to be same as input) * @return {PIXI.Point} The new point, transformed through this matrix */ apply(pos, newPos) { newPos = newPos || new Point(); const x = pos.x; const y = pos.y; newPos.x = (this.a * x) + (this.c * y) + this.tx; newPos.y = (this.b * x) + (this.d * y) + this.ty; return newPos; } /** * Get a new position with the inverse of the current transformation applied. * Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input) * * @param {PIXI.Point} pos - The origin * @param {PIXI.Point} [newPos] - The point that the new position is assigned to (allowed to be same as input) * @return {PIXI.Point} The new point, inverse-transformed through this matrix */ applyInverse(pos, newPos) { newPos = newPos || new Point(); const id = 1 / ((this.a * this.d) + (this.c * -this.b)); const x = pos.x; const y = pos.y; newPos.x = (this.d * id * x) + (-this.c * id * y) + (((this.ty * this.c) - (this.tx * this.d)) * id); newPos.y = (this.a * id * y) + (-this.b * id * x) + (((-this.ty * this.a) + (this.tx * this.b)) * id); return newPos; } /** * Translates the matrix on the x and y. * * @param {number} x How much to translate x by * @param {number} y How much to translate y by * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ translate(x, y) { this.tx += x; this.ty += y; return this; } /** * Applies a scale transformation to the matrix. * * @param {number} x The amount to scale horizontally * @param {number} y The amount to scale vertically * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ scale(x, y) { this.a *= x; this.d *= y; this.c *= x; this.b *= y; this.tx *= x; this.ty *= y; return this; } /** * Applies a rotation transformation to the matrix. * * @param {number} angle - The angle in radians. * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ rotate(angle) { const cos = Math.cos(angle); const sin = Math.sin(angle); const a1 = this.a; const c1 = this.c; const tx1 = this.tx; this.a = (a1 * cos) - (this.b * sin); this.b = (a1 * sin) + (this.b * cos); this.c = (c1 * cos) - (this.d * sin); this.d = (c1 * sin) + (this.d * cos); this.tx = (tx1 * cos) - (this.ty * sin); this.ty = (tx1 * sin) + (this.ty * cos); return this; } /** * Appends the given Matrix to this Matrix. * * @param {PIXI.Matrix} matrix - The matrix to append. * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ append(matrix) { const a1 = this.a; const b1 = this.b; const c1 = this.c; const d1 = this.d; this.a = (matrix.a * a1) + (matrix.b * c1); this.b = (matrix.a * b1) + (matrix.b * d1); this.c = (matrix.c * a1) + (matrix.d * c1); this.d = (matrix.c * b1) + (matrix.d * d1); this.tx = (matrix.tx * a1) + (matrix.ty * c1) + this.tx; this.ty = (matrix.tx * b1) + (matrix.ty * d1) + this.ty; return this; } /** * Sets the matrix based on all the available properties * * @param {number} x - Position on the x axis * @param {number} y - Position on the y axis * @param {number} pivotX - Pivot on the x axis * @param {number} pivotY - Pivot on the y axis * @param {number} scaleX - Scale on the x axis * @param {number} scaleY - Scale on the y axis * @param {number} rotation - Rotation in radians * @param {number} skewX - Skew on the x axis * @param {number} skewY - Skew on the y axis * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ setTransform(x, y, pivotX, pivotY, scaleX, scaleY, rotation, skewX, skewY) { const sr = Math.sin(rotation); const cr = Math.cos(rotation); const cy = Math.cos(skewY); const sy = Math.sin(skewY); const nsx = -Math.sin(skewX); const cx = Math.cos(skewX); const a = cr * scaleX; const b = sr * scaleX; const c = -sr * scaleY; const d = cr * scaleY; this.a = (cy * a) + (sy * c); this.b = (cy * b) + (sy * d); this.c = (nsx * a) + (cx * c); this.d = (nsx * b) + (cx * d); this.tx = x + ((pivotX * a) + (pivotY * c)); this.ty = y + ((pivotX * b) + (pivotY * d)); return this; } /** * Prepends the given Matrix to this Matrix. * * @param {PIXI.Matrix} matrix - The matrix to prepend * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ prepend(matrix) { const tx1 = this.tx; if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1) { const a1 = this.a; const c1 = this.c; this.a = (a1 * matrix.a) + (this.b * matrix.c); this.b = (a1 * matrix.b) + (this.b * matrix.d); this.c = (c1 * matrix.a) + (this.d * matrix.c); this.d = (c1 * matrix.b) + (this.d * matrix.d); } this.tx = (tx1 * matrix.a) + (this.ty * matrix.c) + matrix.tx; this.ty = (tx1 * matrix.b) + (this.ty * matrix.d) + matrix.ty; return this; } /** * Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform. * * @param {PIXI.Transform|PIXI.TransformStatic} transform - The transform to apply the properties to. * @return {PIXI.Transform|PIXI.TransformStatic} The transform with the newly applied properties */ decompose(transform) { // sort out rotation / skew.. const a = this.a; const b = this.b; const c = this.c; const d = this.d; const skewX = Math.atan2(-c, d); const skewY = Math.atan2(b, a); const delta = Math.abs(1 - (skewX / skewY)); if (delta < 0.00001) { transform.rotation = skewY; if (a < 0 && d >= 0) { transform.rotation += (transform.rotation <= 0) ? Math.PI : -Math.PI; } transform.skew.x = transform.skew.y = 0; } else { transform.skew.x = skewX; transform.skew.y = skewY; } // next set scale transform.scale.x = Math.sqrt((a * a) + (b * b)); transform.scale.y = Math.sqrt((c * c) + (d * d)); // next set position transform.position.x = this.tx; transform.position.y = this.ty; return transform; } /** * Inverts this matrix * * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ invert() { const a1 = this.a; const b1 = this.b; const c1 = this.c; const d1 = this.d; const tx1 = this.tx; const n = (a1 * d1) - (b1 * c1); this.a = d1 / n; this.b = -b1 / n; this.c = -c1 / n; this.d = a1 / n; this.tx = ((c1 * this.ty) - (d1 * tx1)) / n; this.ty = -((a1 * this.ty) - (b1 * tx1)) / n; return this; } /** * Resets this Matix to an identity (default) matrix. * * @return {PIXI.Matrix} This matrix. Good for chaining method calls. */ identity() { this.a = 1; this.b = 0; this.c = 0; this.d = 1; this.tx = 0; this.ty = 0; return this; } /** * Creates a new Matrix object with the same values as this one. * * @return {PIXI.Matrix} A copy of this matrix. Good for chaining method calls. */ clone() { const matrix = new Matrix(); matrix.a = this.a; matrix.b = this.b; matrix.c = this.c; matrix.d = this.d; matrix.tx = this.tx; matrix.ty = this.ty; return matrix; } /** * Changes the values of the given matrix to be the same as the ones in this matrix * * @param {PIXI.Matrix} matrix - The matrix to copy from. * @return {PIXI.Matrix} The matrix given in parameter with its values updated. */ copy(matrix) { matrix.a = this.a; matrix.b = this.b; matrix.c = this.c; matrix.d = this.d; matrix.tx = this.tx; matrix.ty = this.ty; return matrix; } /** * A default (identity) matrix * * @static * @const */ static get IDENTITY() { return new Matrix(); } /** * A temp matrix * * @static * @const */ static get TEMP_MATRIX() { return new Matrix(); } }