// Your friendly neighbour https://en.wikipedia.org/wiki/Dihedral_group // // This file implements the dihedral group of order 16, also called // of degree 8. That's why its called groupD8. import { Matrix } from './Matrix'; /* * Transform matrix for operation n is: * | ux | vx | * | uy | vy | */ const ux = [1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1]; const uy = [0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1]; const vx = [0, -1, -1, -1, 0, 1, 1, 1, 0, 1, 1, 1, 0, -1, -1, -1]; const vy = [1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, -1]; /** * [Cayley Table]{@link https://en.wikipedia.org/wiki/Cayley_table} * for the composition of each rotation in the dihederal group D8. * * @type number[][] * @private */ const rotationCayley = []; /** * Matrices for each `GD8Symmetry` rotation. * * @type Matrix[] * @private */ const rotationMatrices = []; /* * Alias for {@code Math.sign}. */ const signum = Math.sign; /* * Initializes `rotationCayley` and `rotationMatrices`. It is called * only once below. */ function init() { for (let i = 0; i < 16; i++) { const row = []; rotationCayley.push(row); for (let j = 0; j < 16; j++) { /* Multiplies rotation matrices i and j. */ const _ux = signum((ux[i] * ux[j]) + (vx[i] * uy[j])); const _uy = signum((uy[i] * ux[j]) + (vy[i] * uy[j])); const _vx = signum((ux[i] * vx[j]) + (vx[i] * vy[j])); const _vy = signum((uy[i] * vx[j]) + (vy[i] * vy[j])); /* Finds rotation matrix matching the product and pushes it. */ for (let k = 0; k < 16; k++) { if (ux[k] === _ux && uy[k] === _uy && vx[k] === _vx && vy[k] === _vy) { row.push(k); break; } } } } for (let i = 0; i < 16; i++) { const mat = new Matrix(); mat.set(ux[i], uy[i], vx[i], vy[i], 0, 0); rotationMatrices.push(mat); } } init(); /** * @memberof PIXI * @typedef {number} GD8Symmetry * @see PIXI.groupD8 */ /** * Implements the dihedral group D8, which is similar to * [group D4]{@link http://mathworld.wolfram.com/DihedralGroupD4.html}; * D8 is the same but with diagonals, and it is used for texture * rotations. * * The directions the U- and V- axes after rotation * of an angle of `a: GD8Constant` are the vectors `(uX(a), uY(a))` * and `(vX(a), vY(a))`. These aren't necessarily unit vectors. * * **Origin:**<br> * This is the small part of gameofbombs.com portal system. It works. * * @see PIXI.groupD8.E * @see PIXI.groupD8.SE * @see PIXI.groupD8.S * @see PIXI.groupD8.SW * @see PIXI.groupD8.W * @see PIXI.groupD8.NW * @see PIXI.groupD8.N * @see PIXI.groupD8.NE * @author Ivan @ivanpopelyshev * @namespace PIXI.groupD8 * @memberof PIXI */ export const groupD8 = { /** * | Rotation | Direction | * |----------|-----------| * | 0° | East | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ E: 0, /** * | Rotation | Direction | * |----------|-----------| * | 45°↻ | Southeast | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ SE: 1, /** * | Rotation | Direction | * |----------|-----------| * | 90°↻ | South | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ S: 2, /** * | Rotation | Direction | * |----------|-----------| * | 135°↻ | Southwest | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ SW: 3, /** * | Rotation | Direction | * |----------|-----------| * | 180° | West | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ W: 4, /** * | Rotation | Direction | * |-------------|--------------| * | -135°/225°↻ | Northwest | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ NW: 5, /** * | Rotation | Direction | * |-------------|--------------| * | -90°/270°↻ | North | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ N: 6, /** * | Rotation | Direction | * |-------------|--------------| * | -45°/315°↻ | Northeast | * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ NE: 7, /** * Reflection about Y-axis. * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ MIRROR_VERTICAL: 8, /** * Reflection about the main diagonal. * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ MAIN_DIAGONAL: 10, /** * Reflection about X-axis. * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ MIRROR_HORIZONTAL: 12, /** * Reflection about reverse diagonal. * * @memberof PIXI.groupD8 * @constant {PIXI.GD8Symmetry} */ REVERSE_DIAGONAL: 14, /** * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} ind - sprite rotation angle. * @return {PIXI.GD8Symmetry} The X-component of the U-axis * after rotating the axes. */ uX: (ind) => ux[ind], /** * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} ind - sprite rotation angle. * @return {PIXI.GD8Symmetry} The Y-component of the U-axis * after rotating the axes. */ uY: (ind) => uy[ind], /** * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} ind - sprite rotation angle. * @return {PIXI.GD8Symmetry} The X-component of the V-axis * after rotating the axes. */ vX: (ind) => vx[ind], /** * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} ind - sprite rotation angle. * @return {PIXI.GD8Symmetry} The Y-component of the V-axis * after rotating the axes. */ vY: (ind) => vy[ind], /** * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} rotation - symmetry whose opposite * is needed. Only rotations have opposite symmetries while * reflections don't. * @return {PIXI.GD8Symmetry} The opposite symmetry of `rotation` */ inv: (rotation) => { if (rotation & 8)// true only if between 8 & 15 (reflections) { return rotation & 15;// or rotation % 16 } return (-rotation) & 7;// or (8 - rotation) % 8 }, /** * Composes the two D8 operations. * * Taking `^` as reflection: * * | | E=0 | S=2 | W=4 | N=6 | E^=8 | S^=10 | W^=12 | N^=14 | * |-------|-----|-----|-----|-----|------|-------|-------|-------| * | E=0 | E | S | W | N | E^ | S^ | W^ | N^ | * | S=2 | S | W | N | E | S^ | W^ | N^ | E^ | * | W=4 | W | N | E | S | W^ | N^ | E^ | S^ | * | N=6 | N | E | S | W | N^ | E^ | S^ | W^ | * | E^=8 | E^ | N^ | W^ | S^ | E | N | W | S | * | S^=10 | S^ | E^ | N^ | W^ | S | E | N | W | * | W^=12 | W^ | S^ | E^ | N^ | W | S | E | N | * | N^=14 | N^ | W^ | S^ | E^ | N | W | S | E | * * [This is a Cayley table]{@link https://en.wikipedia.org/wiki/Cayley_table} * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} rotationSecond - Second operation, which * is the row in the above cayley table. * @param {PIXI.GD8Symmetry} rotationFirst - First operation, which * is the column in the above cayley table. * @return {PIXI.GD8Symmetry} Composed operation */ add: (rotationSecond, rotationFirst) => ( rotationCayley[rotationSecond][rotationFirst] ), /** * Reverse of `add`. * * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} rotationSecond - Second operation * @param {PIXI.GD8Symmetry} rotationFirst - First operation * @return {PIXI.GD8Symmetry} Result */ sub: (rotationSecond, rotationFirst) => ( rotationCayley[rotationSecond][groupD8.inv(rotationFirst)] ), /** * Adds 180 degrees to rotation, which is a commutative * operation. * * @memberof PIXI.groupD8 * @param {number} rotation - The number to rotate. * @returns {number} Rotated number */ rotate180: (rotation) => rotation ^ 4, /** * Checks if the rotation angle is vertical, i.e. south * or north. It doesn't work for reflections. * * @memberof PIXI.groupD8 * @param {PIXI.GD8Symmetry} rotation - The number to check. * @returns {boolean} Whether or not the direction is vertical */ isVertical: (rotation) => (rotation & 3) === 2, // rotation % 4 === 2 /** * Approximates the vector `V(dx,dy)` into one of the * eight directions provided by `groupD8`. * * @memberof PIXI.groupD8 * @param {number} dx - X-component of the vector * @param {number} dy - Y-component of the vector * @return {PIXI.GD8Symmetry} Approximation of the vector into * one of the eight symmetries. */ byDirection: (dx, dy) => { if (Math.abs(dx) * 2 <= Math.abs(dy)) { if (dy >= 0) { return groupD8.S; } return groupD8.N; } else if (Math.abs(dy) * 2 <= Math.abs(dx)) { if (dx > 0) { return groupD8.E; } return groupD8.W; } else if (dy > 0) { if (dx > 0) { return groupD8.SE; } return groupD8.SW; } else if (dx > 0) { return groupD8.NE; } return groupD8.NW; }, /** * Helps sprite to compensate texture packer rotation. * * @memberof PIXI.groupD8 * @param {PIXI.Matrix} matrix - sprite world matrix * @param {PIXI.GD8Symmetry} rotation - The rotation factor to use. * @param {number} tx - sprite anchoring * @param {number} ty - sprite anchoring */ matrixAppendRotationInv: (matrix, rotation, tx = 0, ty = 0) => { // Packer used "rotation", we use "inv(rotation)" const mat = rotationMatrices[groupD8.inv(rotation)]; mat.tx = tx; mat.ty = ty; matrix.append(mat); }, };