import math from '../math';
import TransformBase from './TransformBase';
/**
* Generic class to deal with traditional 2D matrix transforms
* local transformation is calculated from position,scale,skew and rotation
*
* @class
* @extends PIXI.TransformBase
* @memberof PIXI
*/
class Transform extends TransformBase
{
constructor()
{
super();
/**
* The coordinate of the object relative to the local coordinates of the parent.
*
* @member {PIXI.Point}
*/
this.position = new math.Point(0,0);
/**
* The scale factor of the object.
*
* @member {PIXI.Point}
*/
this.scale = new math.Point(1,1);
/**
* The skew amount, on the x and y axis.
*
* @member {PIXI.ObservablePoint}
*/
this.skew = new math.ObservablePoint(this.updateSkew, this, 0,0);
/**
* The pivot point of the displayObject that it rotates around
*
* @member {PIXI.Point}
*/
this.pivot = new math.Point(0,0);
/**
* The rotation value of the object, in radians
*
* @member {Number}
* @private
*/
this._rotation = 0;
this._sr = Math.sin(0);
this._cr = Math.cos(0);
this._cy = Math.cos(0);//skewY);
this._sy = Math.sin(0);//skewY);
this._nsx = Math.sin(0);//skewX);
this._cx = Math.cos(0);//skewX);
}
updateSkew()
{
this._cy = Math.cos(this.skew.y);
this._sy = Math.sin(this.skew.y);
this._nsx = Math.sin(this.skew.x);
this._cx = Math.cos(this.skew.x);
}
/**
* Updates only local matrix
*/
updateLocalTransform() {
let lt = this.localTransform;
let a, b, c, d;
a = this._cr * this.scale.x;
b = this._sr * this.scale.x;
c = -this._sr * this.scale.y;
d = this._cr * this.scale.y;
lt.a = this._cy * a + this._sy * c;
lt.b = this._cy * b + this._sy * d;
lt.c = this._nsx * a + this._cx * c;
lt.d = this._nsx * b + this._cx * d;
}
/**
* Updates the values of the object and applies the parent's transform.
* @param parentTransform {PIXI.Transform} The transform of the parent of this object
*/
updateTransform(parentTransform)
{
let pt = parentTransform.worldTransform;
let wt = this.worldTransform;
let lt = this.localTransform;
let a, b, c, d;
a = this._cr * this.scale.x;
b = this._sr * this.scale.x;
c = -this._sr * this.scale.y;
d = this._cr * this.scale.y;
lt.a = this._cy * a + this._sy * c;
lt.b = this._cy * b + this._sy * d;
lt.c = this._nsx * a + this._cx * c;
lt.d = this._nsx * b + this._cx * d;
lt.tx = this.position.x - (this.pivot.x * lt.a + this.pivot.y * lt.c);
lt.ty = this.position.y - (this.pivot.x * lt.b + this.pivot.y * lt.d);
// concat the parent matrix with the objects transform.
wt.a = lt.a * pt.a + lt.b * pt.c;
wt.b = lt.a * pt.b + lt.b * pt.d;
wt.c = lt.c * pt.a + lt.d * pt.c;
wt.d = lt.c * pt.b + lt.d * pt.d;
wt.tx = lt.tx * pt.a + lt.ty * pt.c + pt.tx;
wt.ty = lt.tx * pt.b + lt.ty * pt.d + pt.ty;
this._worldID ++;
}
/**
* Decomposes a matrix and sets the transforms properties based on it.
* @param {PIXI.Matrix} The matrix to decompose
*/
setFromMatrix(matrix)
{
matrix.decompose(this);
}
/**
* The rotation of the object in radians.
*
* @member {number}
* @memberof PIXI.Transform#
*/
get rotation() {
return this._rotation;
}
set rotation(value) {
this._rotation = value;
this._sr = Math.sin(value);
this._cr = Math.cos(value);
}
}
export default Transform;