var Point = require('./Point');
/**
* The Matrix class is now an object, which makes it a lot faster,
* here is a representation of it :
* | a | b | tx|
* | c | d | ty|
* | 0 | 0 | 1 |
*
* @class
* @namespace PIXI
*/
function Matrix() {
/**
* @member {number}
* @default 1
*/
this.a = 1;
/**
* @member {number}
* @default 0
*/
this.b = 0;
/**
* @member {number}
* @default 0
*/
this.c = 0;
/**
* @member {number}
* @default 1
*/
this.d = 1;
/**
* @member {number}
* @default 0
*/
this.tx = 0;
/**
* @member {number}
* @default 0
*/
this.ty = 0;
};
Matrix.prototype.constructor = Matrix;
module.exports = Matrix;
/**
* Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:
*
* a = array[0]
* b = array[1]
* c = array[3]
* d = array[4]
* tx = array[2]
* ty = array[5]
*
* @param array {number[]} The array that the matrix will be populated from.
*/
Matrix.prototype.fromArray = function (array) {
this.a = array[0];
this.b = array[1];
this.c = array[3];
this.d = array[4];
this.tx = array[2];
this.ty = array[5];
};
/**
* Creates an array from the current Matrix object.
*
* @param transpose {boolean} Whether we need to transpose the matrix or not
* @return {number[]} the newly created array which contains the matrix
*/
Matrix.prototype.toArray = function (transpose) {
if (!this.array) {
this.array = new Float32Array(9);
}
var array = this.array;
if (transpose) {
array[0] = this.a;
array[1] = this.b;
array[2] = 0;
array[3] = this.c;
array[4] = this.d;
array[5] = 0;
array[6] = this.tx;
array[7] = this.ty;
array[8] = 1;
}
else {
array[0] = this.a;
array[1] = this.c;
array[2] = this.tx;
array[3] = this.b;
array[4] = this.d;
array[5] = this.ty;
array[6] = 0;
array[7] = 0;
array[8] = 1;
}
return array;
};
/**
* Get a new position with the current transformation applied.
* Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)
*
* @param pos {Point} The origin
* @param [newPos] {Point} The point that the new position is assigned to (allowed to be same as input)
* @return {Point} The new point, transformed through this matrix
*/
Matrix.prototype.apply = function (pos, newPos) {
newPos = newPos || new Point();
newPos.x = this.a * pos.x + this.c * pos.y + this.tx;
newPos.y = this.b * pos.x + this.d * pos.y + this.ty;
return newPos;
};
/**
* Get a new position with the inverse of the current transformation applied.
* Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)
*
* @param pos {Point} The origin
* @param [newPos] {Point} The point that the new position is assigned to (allowed to be same as input)
* @return {Point} The new point, inverse-transformed through this matrix
*/
Matrix.prototype.applyInverse = function (pos, newPos) {
newPos = newPos || new Point();
var id = 1 / (this.a * this.d + this.c * -this.b);
newPos.x = this.d * id * pos.x + -this.c * id * pos.y + (this.ty * this.c - this.tx * this.d) * id;
newPos.y = this.a * id * pos.y + -this.b * id * pos.x + (-this.ty * this.a + this.tx * this.b) * id;
return newPos;
};
/**
* Translates the matrix on the x and y.
*
* @param {number} x
* @param {number} y
* @return {Matrix} This matrix. Good for chaining method calls.
*/
Matrix.prototype.translate = function (x, y) {
this.tx += x;
this.ty += y;
return this;
};
/**
* Applies a scale transformation to the matrix.
*
* @param {number} x The amount to scale horizontally
* @param {number} y The amount to scale vertically
* @return {Matrix} This matrix. Good for chaining method calls.
*/
Matrix.prototype.scale = function (x, y) {
this.a *= x;
this.d *= y;
this.c *= x;
this.b *= y;
this.tx *= x;
this.ty *= y;
return this;
};
/**
* Applies a rotation transformation to the matrix.
*
* @param {number} angle - The angle in radians.
* @return {Matrix} This matrix. Good for chaining method calls.
*/
Matrix.prototype.rotate = function (angle) {
var cos = Math.cos( angle );
var sin = Math.sin( angle );
var a1 = this.a;
var c1 = this.c;
var tx1 = this.tx;
this.a = a1 * cos-this.b * sin;
this.b = a1 * sin+this.b * cos;
this.c = c1 * cos-this.d * sin;
this.d = c1 * sin+this.d * cos;
this.tx = tx1 * cos - this.ty * sin;
this.ty = tx1 * sin + this.ty * cos;
return this;
};
/**
* Appends the given Matrix to this Matrix.
*
* @param {Matrix} matrix
* @return {Matrix} This matrix. Good for chaining method calls.
*/
Matrix.prototype.append = function (matrix) {
var a1 = this.a;
var b1 = this.b;
var c1 = this.c;
var d1 = this.d;
this.a = matrix.a * a1 + matrix.b * c1;
this.b = matrix.a * b1 + matrix.b * d1;
this.c = matrix.c * a1 + matrix.d * c1;
this.d = matrix.c * b1 + matrix.d * d1;
this.tx = matrix.tx * a1 + matrix.ty * c1 + this.tx;
this.ty = matrix.tx * b1 + matrix.ty * d1 + this.ty;
return this;
};
/**
* Resets this Matix to an identity (default) matrix.
*
* @return {Matrix} This matrix. Good for chaining method calls.
*/
Matrix.prototype.identity = function () {
this.a = 1;
this.b = 0;
this.c = 0;
this.d = 1;
this.tx = 0;
this.ty = 0;
return this;
};
identityMatrix = new Matrix();