var math = require('../math'); /** * The base class for all objects that are rendered on the screen. * This is an abstract class and should not be used on its own rather it should be extended. * * @class * @namespace PIXI */ function DisplayObject() { /** * The coordinate of the object relative to the local coordinates of the parent. * * @member {Point} */ this.position = new math.Point(); /** * The scale factor of the object. * * @member {Point} */ this.scale = new math.Point(1, 1); /** * The pivot point of the displayObject that it rotates around * * @member {Point} */ this.pivot = new math.Point(0, 0); /** * The rotation of the object in radians. * * @member {number} */ this.rotation = 0; /** * The opacity of the object. * * @member {number} */ this.alpha = 1; /** * The visibility of the object. If false the object will not be drawn, and * the updateTransform function will not be called. * * @member {boolean} */ this.visible = true; /** * Can this object be rendered, if false the object will not be drawn but the updateTransform * methods will still be called. * * @member {boolean} */ this.renderable = false; /** * The display object container that contains this display object. * * @member {DisplayObjectContainer} * @readOnly */ this.parent = null; /** * The multiplied alpha of the displayObject * * @member {number} * @readOnly */ this.worldAlpha = 1; /** * Current transform of the object based on world (parent) factors * * @member {Matrix} * @readOnly */ this.worldTransform = new math.Matrix(); /** * The area the filter is applied to. This is used as more of an optimisation * rather than figuring out the dimensions of the displayObject each frame you can set this rectangle * * @member {Rectangle} */ this.filterArea = null; /** * cached sin rotation * * @member {number} * @private */ this._sr = 0; /** * cached cos rotation * * @member {number} * @private */ this._cr = 1; /** * The original, cached bounds of the object * * @member {Rectangle} * @private */ this._bounds = new math.Rectangle(0, 0, 1, 1); /** * The most up-to-date bounds of the object * * @member {Rectangle} * @private */ this._currentBounds = null; /** * The original, cached mask of the object * * @member {Rectangle} * @private */ this._mask = null; this._isMask = false; /** * Cached internal flag. * * @member {boolean} * @private */ this._cacheIsDirty = false; } // constructor DisplayObject.prototype.constructor = DisplayObject; module.exports = DisplayObject; Object.defineProperties(DisplayObject.prototype, { /** * The position of the displayObject on the x axis relative to the local coordinates of the parent. * * @member {number} * @memberof DisplayObject# */ x: { get: function () { return this.position.x; }, set: function (value) { this.position.x = value; } }, /** * The position of the displayObject on the y axis relative to the local coordinates of the parent. * * @member {number} * @memberof DisplayObject# */ y: { get: function () { return this.position.y; }, set: function (value) { this.position.y = value; } }, /** * Indicates if the sprite is globally visible. * * @member {boolean} * @memberof DisplayObject# * @readonly */ worldVisible: { get: function () { var item = this; do { if (!item.visible) { return false; } item = item.parent; } while(item); return true; } }, /** * Sets a mask for the displayObject. A mask is an object that limits the visibility of an object to the shape of the mask applied to it. * In PIXI a regular mask must be a PIXI.Graphics object. This allows for much faster masking in canvas as it utilises shape clipping. * To remove a mask, set this property to null. * * @member {Graphics} * @memberof DisplayObject# */ mask: { get: function () { return this._mask; }, set: function (value) { if (this._mask) { this._mask.isMask = false; } this._mask = value; if (this._mask) { this._mask.isMask = true; } } }, /** * Sets the filters for the displayObject. * * IMPORTANT: This is a webGL only feature and will be ignored by the canvas renderer. * To remove filters simply set this property to 'null' * * @member {Filter[]} * @memberof DisplayObject# */ filters: { get: function () { return this._filters.slice(); }, set: function (value) { this._filters = value.slice(); //if(this._mask) } } }); /* * Updates the object transform for rendering * * TODO - Optimization pass! * * @private */ DisplayObject.prototype.updateTransform = function () { // create some matrix refs for easy access var pt = this.parent.worldTransform; var wt = this.worldTransform; // temporary matrix variables var a, b, c, d, tx, ty; // so if rotation is between 0 then we can simplify the multiplication process.. if (this.rotation % math.PI_2) { // check to see if the rotation is the same as the previous render. This means we only need to use sin and cos when rotation actually changes if (this.rotation !== this.rotationCache) { this.rotationCache = this.rotation; this._sr = Math.sin(this.rotation); this._cr = Math.cos(this.rotation); } // get the matrix values of the displayobject based on its transform properties.. a = this._cr * this.scale.x; b = this._sr * this.scale.x; c = -this._sr * this.scale.y; d = this._cr * this.scale.y; tx = this.position.x; ty = this.position.y; // check for pivot.. not often used so geared towards that fact! if (this.pivot.x || this.pivot.y) { tx -= this.pivot.x * a + this.pivot.y * c; ty -= this.pivot.x * b + this.pivot.y * d; } // concat the parent matrix with the objects transform. wt.a = a * pt.a + b * pt.c; wt.b = a * pt.b + b * pt.d; wt.c = c * pt.a + d * pt.c; wt.d = c * pt.b + d * pt.d; wt.tx = tx * pt.a + ty * pt.c + pt.tx; wt.ty = tx * pt.b + ty * pt.d + pt.ty; } else { // lets do the fast version as we know there is no rotation.. a = this.scale.x; d = this.scale.y; tx = this.position.x - this.pivot.x * a; ty = this.position.y - this.pivot.y * d; wt.a = a * pt.a; wt.b = a * pt.b; wt.c = d * pt.c; wt.d = d * pt.d; wt.tx = tx * pt.a + ty * pt.c + pt.tx; wt.ty = tx * pt.b + ty * pt.d + pt.ty; } // multiply the alphas.. this.worldAlpha = this.alpha * this.parent.worldAlpha; }; // performance increase to avoid using call.. (10x faster) DisplayObject.prototype.displayObjectUpdateTransform = DisplayObject.prototype.updateTransform; /** * Retrieves the bounds of the displayObject as a rectangle object * * @param matrix {Matrix} * @return {Rectangle} the rectangular bounding area */ DisplayObject.prototype.getBounds = function (/* matrix */) { return math.Rectangle.EMPTY; }; /** * Retrieves the local bounds of the displayObject as a rectangle object * * @return {Rectangle} the rectangular bounding area */ DisplayObject.prototype.getLocalBounds = function () { return this.getBounds(math.Matrix.IDENTITY); }; /** * Calculates the global position of the display object * * @param position {Point} The world origin to calculate from * @return {Point} A point object representing the position of this object */ DisplayObject.prototype.toGlobal = function (position) { // don't need to u[date the lot this.displayObjectUpdateTransform(); return this.worldTransform.apply(position); }; /** * Calculates the local position of the display object relative to another point * * @param position {Point} The world origin to calculate from * @param [from] {DisplayObject} The DisplayObject to calculate the global position from * @return {Point} A point object representing the position of this object */ DisplayObject.prototype.toLocal = function (position, from) { if (from) { position = from.toGlobal(position); } // don't need to update the lot this.displayObjectUpdateTransform(); return this.worldTransform.applyInverse(position); }; /** * Renders the object using the WebGL renderer * * @param renderer {WebGLRenderer} The renderer * @private */ DisplayObject.prototype.renderWebGL = function (/* renderer */) { // OVERWRITE; }; /** * Renders the object using the Canvas renderer * * @param renderer {CanvasRenderer} The renderer * @private */ DisplayObject.prototype.renderCanvas = function (/* renderer */) { // OVERWRITE; };