/** * @author Mat Groves http://matgroves.com/ @Doormat23 */ /** * The NormalMapFilter class uses the pixel values from the specified texture (called the displacement map) to perform a displacement of an object. * You can use this filter to apply all manor of crazy warping effects * Currently the r property of the texture is used offset the x and the g property of the texture is used to offset the y. * * @class NormalMapFilter * @extends AbstractFilter * @constructor * @param texture {Texture} The texture used for the displacement map * must be power of 2 texture at the moment */ PIXI.NormalMapFilter = function(texture) { PIXI.AbstractFilter.call( this ); this.passes = [this]; texture.baseTexture._powerOf2 = true; // set the uniforms this.uniforms = { displacementMap: {type: 'sampler2D', value:texture}, scale: {type: '2f', value:{x:15, y:15}}, offset: {type: '2f', value:{x:0, y:0}}, mapDimensions: {type: '2f', value:{x:1, y:1}}, dimensions: {type: '4f', value:[0,0,0,0]}, // LightDir: {type: 'f3', value:[0, 1, 0]}, LightPos: {type: '3f', value:[0, 1, 0]} }; if(texture.baseTexture.hasLoaded) { this.uniforms.mapDimensions.value.x = texture.width; this.uniforms.mapDimensions.value.y = texture.height; } else { this.boundLoadedFunction = this.onTextureLoaded.bind(this); texture.baseTexture.on("loaded", this.boundLoadedFunction); } this.fragmentSrc = [ "precision mediump float;", "varying vec2 vTextureCoord;", "varying float vColor;", "uniform sampler2D displacementMap;", "uniform sampler2D uSampler;", "uniform vec4 dimensions;", "const vec2 Resolution = vec2(1.0,1.0);", //resolution of screen "uniform vec3 LightPos;", //light position, normalized "const vec4 LightColor = vec4(1.0, 1.0, 1.0, 1.0);", //light RGBA -- alpha is intensity "const vec4 AmbientColor = vec4(1.0, 1.0, 1.0, 0.5);", //ambient RGBA -- alpha is intensity "const vec3 Falloff = vec3(0.0, 1.0, 0.2);", //attenuation coefficients "uniform vec3 LightDir;",//" = vec3(1.0, 0.0, 1.0);", "uniform vec2 mapDimensions;",// = vec2(256.0, 256.0);", "void main(void) {", "vec2 mapCords = vTextureCoord.xy;", "vec4 color = texture2D(uSampler, vTextureCoord.st);", "vec3 nColor = texture2D(displacementMap, vTextureCoord.st).rgb;", "mapCords *= vec2(dimensions.x/512.0, dimensions.y/512.0);", "mapCords.y *= -1.0;", "mapCords.y += 1.0;", //RGBA of our diffuse color "vec4 DiffuseColor = texture2D(uSampler, vTextureCoord);", //RGB of our normal map "vec3 NormalMap = texture2D(displacementMap, mapCords).rgb;", //The delta position of light //"vec3 LightDir = vec3(LightPos.xy - (gl_FragCoord.xy / Resolution.xy), LightPos.z);", "vec3 LightDir = vec3(LightPos.xy - (mapCords.xy), LightPos.z);", //Correct for aspect ratio //"LightDir.x *= Resolution.x / Resolution.y;", //Determine distance (used for attenuation) BEFORE we normalize our LightDir "float D = length(LightDir);", //normalize our vectors "vec3 N = normalize(NormalMap * 2.0 - 1.0);", "vec3 L = normalize(LightDir);", //Pre-multiply light color with intensity //Then perform "N dot L" to determine our diffuse term "vec3 Diffuse = (LightColor.rgb * LightColor.a) * max(dot(N, L), 0.0);", //pre-multiply ambient color with intensity "vec3 Ambient = AmbientColor.rgb * AmbientColor.a;", //calculate attenuation "float Attenuation = 1.0 / ( Falloff.x + (Falloff.y*D) + (Falloff.z*D*D) );", //the calculation which brings it all together "vec3 Intensity = Ambient + Diffuse * Attenuation;", "vec3 FinalColor = DiffuseColor.rgb * Intensity;", "gl_FragColor = vColor * vec4(FinalColor, DiffuseColor.a);", //"gl_FragColor = vec4(1.0, 0.0, 0.0, Attenuation);",//vColor * vec4(FinalColor, DiffuseColor.a);", /* // normalise color "vec3 normal = normalize(nColor * 2.0 - 1.0);", "vec3 deltaPos = vec3( (light.xy - gl_FragCoord.xy) / resolution.xy, light.z );", "float lambert = clamp(dot(normal, lightDir), 0.0, 1.0);", "float d = sqrt(dot(deltaPos, deltaPos));", "float att = 1.0 / ( attenuation.x + (attenuation.y*d) + (attenuation.z*d*d) );", "vec3 result = (ambientColor * ambientIntensity) + (lightColor.rgb * lambert) * att;", "result *= color.rgb;", "gl_FragColor = vec4(result, 1.0);",*/ "}" ]; } PIXI.NormalMapFilter.prototype = Object.create( PIXI.AbstractFilter.prototype ); PIXI.NormalMapFilter.prototype.constructor = PIXI.NormalMapFilter; /** * Sets the map dimensions uniforms when the texture becomes available. * * @method onTextureLoaded */ PIXI.NormalMapFilter.prototype.onTextureLoaded = function() { this.uniforms.mapDimensions.value.x = this.uniforms.displacementMap.value.width; this.uniforms.mapDimensions.value.y = this.uniforms.displacementMap.value.height; this.uniforms.displacementMap.value.baseTexture.off("loaded", this.boundLoadedFunction) }; /** * The texture used for the displacement map. Must be power of 2 texture. * * @property map * @type Texture */ Object.defineProperty(PIXI.NormalMapFilter.prototype, 'map', { get: function() { return this.uniforms.displacementMap.value; }, set: function(value) { this.uniforms.displacementMap.value = value; } }); /** * The multiplier used to scale the displacement result from the map calculation. * * @property scale * @type Point */ Object.defineProperty(PIXI.NormalMapFilter.prototype, 'scale', { get: function() { return this.uniforms.scale.value; }, set: function(value) { this.uniforms.scale.value = value; } }); /** * The offset used to move the displacement map. * * @property offset * @type Point */ Object.defineProperty(PIXI.NormalMapFilter.prototype, 'offset', { get: function() { return this.uniforms.offset.value; }, set: function(value) { this.uniforms.offset.value = value; } });